Comparison of statistical Holt-Winter models for forecasting the ionospheric delay using GPS observations
نویسندگان
چکیده
The ionosphere is a notable source of error that disrupts the accuracy of the global position system (GPS) signal to the ground by changing the speed and direction of the signal propagation and in the process causing a delay in the signal. Therefore, forecasting the ionospheric delay is very important to reduce the GPS positioning error. In this work, statistical Holt-Winter method was chosen due to its suitability in forecasting time series with repeated seasonal patterns. This involved the forecast of ionospheric delays during the period October 2009 December 2010 using GPS Ionospheric Scintillation and TEC Monitor (GISTM) over Universiti Kebangsaan Malaysia (UKM) station, at geographic coordinates 2.55°N, 101.46°E. The comparison of Additive and Multiplicative Holt-Winter models was done in terms of month-to-month error measurement, the difference of the actual and forecasting delay and the monthly average of the forecast. The maximum difference between actual and forecasting delay was estimated to be about 2 m. The results showed that the accuracy of the Multiplicative model in forecasting the ionospheric delay is better by 2% than that of Additive model going by its small error values and higher accuracy.
منابع مشابه
Statistical analysis on spatial correlation of ionospheric day-to-day variability by using GPS and Incoherent Scatter Radar observations
In this paper, the spatial correlations of ionospheric day-to-day variability are investigated by statistical analysis on GPS and Incoherent Scatter Radar observations. The meridional correlations show significant (>0.8) correlations in the latitudinal blocks of about 6 degrees size on average. Relative larger correlations of TEC’s day-to-day variabilities can be found between magnetic conjugat...
متن کاملIranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps
Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کاملEstimation and Analysis of Precipitable Water Vapor Using GPS Data and Satellite Altimeter
Determination of water vapor in the atmosphere plays an important role in forecasting weather conditions and precipitation studies. For this reason, it is very important to study the tropospheric delay, especially the wet component, which is due to the presence of water vapor in the atmosphere. In this paper, the amount of water vapor was estimated by altimeter satellite radiometer and GPS data...
متن کاملDetection and Modeling of Medium-Scale Travelling Ionospheric Disturbances in Iran Region
Ionosphere layer variations are divided into regular and irregular. Regular changes can be considered as daily changes, changes depending on latitude and changes due to solar activity. Travelling Ionospheric Disturbances (TID) is one of the irregular changes of ionosphere which categorized in small, medium and large scales. Medium-scale Travelling Ionospheric Disturbance (MSTID) which are propa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015